- 1. Other amines.
- 2. Organic liquids.

EVALUATOR:

P. G. T. Fogg,
School of Chemistry,
Polytechnic of North London,
Holloway,
London N7 8DB,
United Kingdom.
August 1983

CRITICAL EVALUATION:

The measurements by Wolff $et\ al.$ (1-6) of the vapor pressure of various systems containing ethanamine, propanamine or deuterated amines are of high standard and may be accepted as reliable.

The solubility of propanamine in several alcohols was measured by Copley $et\ al.$ (7) at 305.4 K and a pressure of propanamine of 106 mmHg, said to be its vapor pressure at 277.7 K. This value of the vapor pressure may be compared with the interpolated value of 119 mmHg from measurements by Wolff which are likely to be the more accurate. However, values published by Copley $et\ al.$ are of the magnitude expected for solubilities in hydroxy-compounds, by analogy with the behaviour of other amines. The possibility of error in the reported pressure should be borne in mind.

Copley et al. also reported solubilities of 2-propanamine, 2-methyl-1-propanamine, 1-butanamine and 2-butanamine. These are of the expected order of magnitude for the solvents investigated and should be accepted on a tentative basis until comparisons with other measurements of solubilities of these amines can be made.

References:

- 1. Wolff, H.; Höpfner, A.; Höpfner, H.-M.

 Ber. Bunsenges. Phys. Chem. 1964, 68, 410.
- 2. Wolff, H.; Höpfner, A.

 Ber. Bunsenges. Phys. Chem. 1965, 69, 710.
- 3. Wolff, H.; Höpfner, A.

 Ber. Bunsenges. Phys. Chem. 1967, 71, 461.
- Wolff, H.; Würtz, R.
 Phys. Chem (Frankfurt am Main) 1969, 67, 115.
- Wolff, H.; Würtz, R.
 J. Phys. Chem. <u>1970</u>, 74, 1600.
- Wolff, H.; Shadiakhy, A.
 Fluid Phase Equilibria 1983, 11, 267-287.
- 7. Copley, M. J.; Ginsberg, E.; Zellhoefer, G. F.; Marvel, C. S. J. Amer. Chem. Soc. <u>1941</u>, 63, 254.

VARIABLES:

- Ethanamine, (ethylamine); C2H2N; [75-04-7]
- 2. Butane; C₄H₁₀; [106-97-8]

ORIGINAL MEASUREMENTS:

Wolff, H.; Höpfner, A.; Höpfner, H.-M. Ber. Bunsenges. Phys. Chem. 1964, 68, 410-417.

PREPARED BY:

Composition, temperature

P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of C_2H_7N in the liquid phase, $x_{C_2H_7N}$

			T/K		
^ж с ₂ н ₇ и	218.15	233.15	253.15	273.15	293.15
	F2 3	105.0	220 5	772 7	1550 6
0	52.1	125.0	338.5	772.7	1552.6
0.0141	53.1	127.0	343.3	782.6	1571.1
0.0353	53.7	129.2	349.2	794.1	1594.2
0.0544	54.2	130.8	352.9	802.9	1612.2
0.0887	54.5	131.7	357.5	814.7	1635.8
0.1265	54.3	132.1	360.0	821.6	1655.4
0.1446	54.6	132.3	360.7	824.1	1660.7
0.168	54.3	132.1	360.3	826.5	1667.4
0.195	54.2	132.1	360.0	827.7	1670.5
0.281	53.9	130.5	358.3	824.4	1672.4
0.348	53.1	129.3	354.3	818.5	1663.1
0.359	54.0	129.5	353.5	816.4	1659.6
0.400	52.9	128.0	350.5	809.9	1649.9
0.423	52.3	127.4	348.0	806.2	1642.9
0.575	50.1	121.4	332.5	770.5	1575.5
0.577	50.1	121.5	331.7	768.4	1571.6
0.646	48.3	116.8	320.3	743.7	1524.6
0.651	48.6	116.6	319.8	743.5	1522.7
				Cont.	

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ± 0.02°C. The total vapor pressures were measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- 1. From commercial reinst ethylammonium chloride by reaction with KOH; gas dried with KOH and Na; liquified gas treated with Li and repeatedly fractionated until the first and last fractions had consistent vapor pressures as
- described for methylamine (1).

 2. Commercial product; dried with P₂O₅ repeatedly fractionated until first and last fractions had consistent vapor pressures as described for hexane (1)

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$ (estimated by authors)

- Wolff, H.; Höpfner, A. Z. Elektro-chem. 1962, 66, 149.
 Barker, J.A. Aust. J. Chem. 1953,
- 6, 207.
- 3. Redlich, O.; Kister, A.T. Ind. Eng. Chem. 1948, 21, 345.

COMPONENTS:	***************************************		ORIGINAL MEASUR	EMENTS:	
[75-	mine, (ethylar 04-7] ; C ₄ H _{lO} ; [106-	. ,		öpfner, A.; Hö es. Phys. Chem 0-417.	
VARIABLES:	<u> </u>		PREPARED BY:		
Com	position, temp	perature	P	. G. T. Fogg	•
EXPERIMENTAL	VALUES: Conf	· .			
			T/K		
^x C ₂ H ₇ N	218.15	233.15	253.15	273.15	293.15
0.772 0.838 0.861 0.900 0.935 0.940 0.962	43.2 38.6 36.4 32.4 26.7 25.8 21.8	104.6 94.0 89.2 79.8 67.3 66.3 56.5 37.3	288.3 262.7 250.5 227.8 199.0 197.0 174.7 131.6	675.5 622.1 598.5 553.1 496.2 492.7 450.1 369.2	1396.9 1300.9 1259.2 1178.0 1082.1 1076.6 1006.7 872.9

760 Torr = 1 atm = 1.013×10^5 Pa

Constants for calculation of activity coefficients from the Redlich-Kister equations given below.

T/K	A	В	С
218.15	1.772	-0.212	0.237
223.15	1.718	-0.201	0.213
228.15	1.671	-0.179	0.205
233.15	1.630	-0.173	0.184
243.15	1.528	-0.128	0.142
253.15	1.439	-0.100	0.123
263.15	1.348	-0.070	0.098
273.15	1.259	-0.041	0.072
283.15	1.176	-0.024	0.062
293.15	1.091	-0.011	0.048

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of ethylamine f_2 = activity coefficient of butane x_1 = mole fraction of ethylamine in the liquid phase x_2 = mole fraction of butane in the liquid phase

- Ethanamine, (ethylamine); C₂H₂N; [75-04-7]
- 2. Hexane; $C_{6}^{H}_{14}$; [110-54-3]

ORIGINAL MEASUREMENTS:

Wolff, H.; Höpfner, A.; Höpfner, H.-M Ber. Bunsenges. Phys. Chem.

1964, 68, 410-417.

VARIABLES:

Composition, temperature

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of C_2H_7N in the liquid phase, $x_{C_2H_7N}$

T/K

^x C ₂ H ₇ N	233.15	253.15	273.15	293.15
0	3.7	14.3	45.4	121.0
0.0105	6.3	20.4	59.1	145.5
0.0266	9.7	29.6	77.8	180.3
0.0359	11.5	34.6	88.3	201.1
0.0598	15.0	43.0	110.9	244.6
0.0824	17.6	52.0	130.5	287.1
0.0921	18.7	56.4	140.1	304.9
0.0956	19.2	56.8	141.4	306.5
0.1244	21.5	64.7	162.4	350.7
0.1591	23.5	72.7	184.4	401.8
0.1744	23.6	75.4	191.8	417.5
0.227	25.7	83.4	215.7	473.3
0.319	28.2	93.3	247.2	552.8
0.400	28.9	100.1	268.1	607.2
0.436	29.9	102.4	276.4	629.2
0.441	29.9	102.2	276.8	632.0
0.558	31.6	109.0	298.5	689.1
0.622	33.0	111.3	307.7	716.2
0.631	32.2	112.6	309.4	722.0
				Cont.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ± 0.02°C. The total vapor pressure was measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- 1. From commercial reinst ethylammonium chloride by reaction with KOH; gas dried with KOH and Na; liquified gas treated with Li and repeatedly fractionated as described for preparation of
- methylamine (1).

 2. Material of high purity; dried over P₂O₅, distilled and repeatedly fractionated until first and last fractions had the same vapor pressures as measured by the manometer

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$ (estimated by authors)

- Wolff, H.; Höpfner, A. Z. Elektro-chem. <u>1962</u>, 66, 149.
 Barker, J.A. Aust. J. Chem. <u>1953</u>,
- 6, 207.
- 3. Redlich, O.; Kister, A.T. Ind. Eng. Chem. 1948, 21, 345.

0.687

0.761

0.831

0.846

0.928

0.951

COMPONENTS:		ORIGINAL	MEASUREMENTS:	
[75-04-	ne, (ethylamine); C ₂ [7] 26^{H}_{14} ; [110-54-3]	Ber. B	H.; Höpfner, A.; unsenges. Phys. Ch	- '
VARIABLES: Compos	sition, temperature	PREPARED	BY: P. G. T. Fogg	
EXPERIMENTAL VA	LUES: Cont.			**************************************
		T	/K	
^x C ₂ H ₇ N	233.15	253.15	273.15	293.15

115.0 118.5

122.5

123.3

127.5

128.4

132.1

318.8

330.5

341.4

344.1

357.3

360.8

369.5

744.2

774.3

801.9 808.1

843.0

851.5

872.8

760 Torr = 1 atm = 1.013×10^5 Pa

32.8

35.1

35.0

35.4

35.6

36.6

37.6

Constants for calculation of activity coefficients from the Redlich-Kister equations given below

T/K	A	В	С
233.15	1.665	-0.082	0.232
243.15	1.581	-0.015	0.169
253.15	1.477	-0.004	0.107
263.15	1.376	+0.024	0.096
273.15	1.285	+0.046	0.081
283.15	1.190	+0.061	0.067
293.15	1.097	+0.077	0.061

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of ethylamine

 f_2 = activity coefficient of hexane

 x_1 = mole fraction of ethylamine in the liquid phase x_2 = mole fraction of hexane in the liquid phase.

COMPONENTS: 1. Ethanamine-d₂; C₂H₅D₂N; [5852-45-9] 2. Butane; C₄H₁₀; [106-97-8]

ORIGINAL MEASUREMENTS:

Wolff, H.; Höpfner, A.

Ber. Bunsenges. Phys. Chem.

1965, 69, 710-716.

VARIABLES:

PREPARED BY:

Composition, Temperature

P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of ${\rm ^{C}_{2}^{H}_{5}^{D}_{2}^{N}}$ in the liquid phase, ${\rm ^{x}_{C}_{2}^{H}_{5}^{D}_{2}^{N}}$

			T/K		
x C ₂ H ₅ D ₂ N	218.15	233.15	253.15	273.15	293.15
0 0.0102 0.0242 0.0463 0.0646 0.0925 0.146 0.171 0.212 0.235 0.268 0.343 0.425 0.483 0.579	52.1 52.9 53.6 53.7 54.1 54.7 54.2 54.3 54.0 53.7 53.3 52.0 52.2 49.7	125.0 126.5 128.4 130.1 131.2 131.6 131.9 131.8 131.3 130.6 130.4 128.9 126.7 125.1	338.5 341.7 346.0 351.0 354.9 357.6 359.9 360.0 359.1 358.9 357.1 353.6 347.2 341.7 329.9	772.7 780.0 788.8 800.5 808.0 816.9 825.6 827.4 827.2 826.9 825.0 816.7 804.2 792.1 765.0	1552.6 1566.5 1583.5 1606.6 1621.4 1640.5 1668.6 1673.6 1674.2 1671.8 1661.3 1638.3 1614.9
0.631 0.651 0.677 0.687	48.6 48.0 46.8 46.9	116.9 115.7 113.6 113.5	321.3 317.0 311.6 310.1	744.9 737.6 725.4 721.5	1525.7 1512.0 1490.6 1482.5 Cont.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ± 0.02°C. The total vapor pressure was measured by a mercury manometer.

The authors calculated activity coefficients of each component by a method described by Barker (2). Constants for Redlich-Kister equations for activity coefficients were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- 1. Prepared from C₂H₅NH₂ and D₂O; repeatedly fractionated until 1st and last fractions had vapor pressures which differed by 0.4 Torr at 20°C. Spectroscopic measurements indicated that the product was at least 99% pure.
- 2. Commercial product; dried over P₂O₅; distilled and repeatedly fractionated until first and last fractions had consistent vapor pressures, as described for hexane (1)

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$ (estimated by authors)

- Wolff, H.; Höpfner, A. Z. Elektrochem. 1962, 66, 149.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- Redlich, O.; Kister, A.T. Ind. Eng. Chem. <u>1948</u>, 21, 345.

COMPONENTS: 1. Ethanamine-d₂; C₂H₅D₂N; Wolff, H.; Höpfner, A. [5852-45-9] 2. Butane; C₄H₁₀; [106-97-8] | DRIGINAL MEASUREMENTS: | Wolff, H.; Höpfner, A. | Ber. Bunsenges. Phys. Chem. | 1965, 69, 710-716.

EXPERIMENTAL VA	LUES: Cont.				
			T/K		
x C $_{2}$ H $_{5}$ D $_{2}$ N	218.15	233.15	253.15	273.15	293.15
0.754 0.803 0.869 0.890 0.930 0.955	43.8 40.6 35.3 32.4 27.1 22.5	105.7 99.2 85.9 80.5 67.9 57.9 34.8	291.5 274.5 242.0 227.6 198.9 175.7 124.5	681.8 645.2 579.4 551.8 494.1 450.5 354.7	1410.7 1342.0 1222.7 1176.3 1078.8 1003.6 847.2

760 Torr = 1 atm = 1.013×10^5 Pa

Constants for calculation of activity coefficients from the Redlich-Kister equations given below

T/K	A	В	С
218.15	1.789	-0.233	0.253
223.15	1.762	-0.219	0.233
228.15	1.699	-0.199	0.210
233.15	1.660	-0.194	0.206
243.15	1.558	-0.151	0.150
253.15	1,470	-0.125	0.132
263.15	1.376	-0.095	0.106
273.15	1.286	-0.071	0.083
283.15	1.199	-0.050	0.064
293.15	1.115	-0.032	0.049

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of ethanamine- d_2

 f_2 = activity coefficient of butane

 x_1 = mole fraction of ethanamine-d₂ in the liquid phase

 x_2 = mole fraction of butane in the liquid phase

ORIGINAL MEASUREMENTS: 1. 1-Propanamine, (propylamine); C₃H₉N; [107-10-8] 2. Hexane; C₆H₁₄; [110-54-3] VARIABLES: Composition, temperature ORIGINAL MEASUREMENTS: Wolff, H.; Höpfner, A.; Höpfner, H.-M. Ber. Bunsenges. Phys. Chem. 1964, 68, 410-417. PREPARED BY: P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of ${\rm C_3H_9N}$ in the liquid phase, ${\rm w_{C_3H_9N}}$

		T/K	
^ж с ₃ н ₉ и	253.15	273.15	293.15
0 0.0055 0.0114 0.0321 0.0679 0.0880 0.1503	14.4 14.9 15.5 17.4 19.9 21.0 23.9	46.0 46.9 48.3 53.0 60.0 63.5 71.7	121.7 124.3 127.6 137.3 153.3 161.0 181.1
0.1715 0.210 0.229 0.277 0.296 0.360 0.402 0.451 0.527 0.608 0.628	24.5 25.5 26.0 26.7 27.1 28.2 28.6 29.3 29.8 30.4 30.2	74.0 77.8 79.3 82.4 83.6 87.0 88.7 90.9 93.1 95.2	186.9 196.6 200.8 209.4 212.5 222.3 227.5 233.7 240.7 247.1 248.0
			Cont

Cont.

AUXILIARY INFORMATION ...

METHOD /APPARATUS / PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to $\pm~0.02^{\circ}$ C. The total vapor pressures were measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- From commercial propylammonium chloride by reaction with KOH; dried with KOH and with Li; repeatedly fractionated until the first and last fractions had the same vapor pressure as measured by manometer. (See ref. 1.)
- manometer. (See ref. 1.)

 2. Commercial product; dried with P₂O₅; repeatedly fractionated until first and last fractions had the same vapor pressure as measured by the manometer (1).

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$ (estimated by authors)

- Wolff, H.; Höpfner, A. Z. Elektrochem. <u>1962</u>, 66, 149.
- Barker, J.A. Aust. J. Chem. 1953, 6, 207.
- Redlich, O.; Kister, A.T. Ind. Eng. Chem. 1948, 21, 345.

ORIGINAL MEASUREMENTS:
Wolff, H.; Höpfner, A.; Höpfner, HM Ber. Bunsenges. Phys. Chem. 1964, 68, 410-417.
PREPARED BY:
P. G. T. Fogg

		T/K	
x _{C3H9N}	253.15	273.15	293.15
0.680	30.6	96.4	250.0
0.725	30.8	97.1	253.5
0.796	30.7	98.0	255.5
0.910	30.2	97.1	255.8
0.971	29.6	95.5	253.3
1	29.0	94.2	252.6

760 Torr = 1 atm = 1.013×10^5 Pa.

Constants for calculation of activity coefficients from the Redlich-Kister equations given below

T/K	A	В	C
253.15	1.253	-0.070	0.090
263.15	1.165	-0.034	0.059
273.15	1.099	-0.002	0.041
283.15	1.024	0.002	0.042
293.15	0.947	0.008	0.015

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of propylamine

 $\vec{f_2}$ = activity coefficient of hexane

 $\vec{x_1}$ = mole fraction of propylamine in the liquid phase

 x_2^- = mole fraction of hexane in the liquid phase

COMPONENTS:			ORIGINAL MEA	ASUREMENTS:	
 Propanamine; C₃H₉N; [107-10-8] Hexane; C₆H₁₊; [110-54-3] 			Wolff, H.; Shadiakhy, A.		
			Fluid Phase Equilibria		
			<u>1983</u> , 11	, 267-287.	
VARIABLES:			PREPARED BY	:	
				C. L. Y	oung
EXPERIMENTAL	VALUES:				
T/K	x_1	P/kPa	T/K	<i>x</i> 1	P/kPa
293.15	0 0.0484 0.0971 0.1500 0.1836 0.2340 0.2843 0.3480 0.3778 0.4297 0.4831 0.5431 0.5431 0.5840 0.6598 0.7089 0.7672 0.8048 0.8779 0.9386 0.9756	25.30 26.77 27.97 29.42 29.98 30.76 31.50 32.29 32.60 33.29 33.69 34.04 34.22 34.44	303.15	0 0.0484 0.0971 0.1498 0.1834 0.2338 0.2841 0.3478 0.3777 0.4295 0.4830 0.5430 0.5839 0.6597 0.7088 0.7672 0.8047 0.8775 0.9386 0.9756	38.05 40.32 42.25 44.41 45.28 46.56 47.80 49.01 49.72 50.68 51.37 52.08 52.33 52.65

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

Apparatus described previously was used (1), (2). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ±0.02 °C. The total pressure was measured using a mercury manometer. The authors calculated activity coefficients of each component by a method described by Barker (3). Constants for the Wilson equation (4) were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- Fluka purissima grade, fractionated, purity 99.5 mole per cent
- Purity 99.97 mole per cent, degassed, dried over molecular sieve.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$.

- Wolff, H.; Höppel, H. E. Ber. Bunsenges. Phys. Chem. 1966, 70, 874.
- 2. Wolff, H.; Shadiakhy, A. Fluid Phase Equilibria 1981, 7, 309.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- 4. Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.

262		Solubilities o	t Other Amin	es		
COMPONENTS:			ORIGINAL ME	EASUREMENTS:	· <u>···</u>	
1. Propa	namime; C ₃ I	H ₉ N; [107-10-8]	Wolff, I	H.; Shadiak	hy, A.	
2. Hexan	e; C ₆ H ₁₄ ;	[110-54-3]	Fluid Pi	hase Equilib	ria	
			1983, 1	1, 267-287.		
EXPERIMENTAL	VALUES:	-				
T/K	x_1	P/kPa	T/K	x_1	P/kPa	
313.15	0 0.0484 0.0970 0.1496 0.1832 0.2838 0.3774 0.4293 0.4828 0.5428 0.5838 0.6596 0.7087 0.7671 0.8047 0.9386 0.9756	37.26 43.13 48.26 53.14 55.54 58.82 61.70 64.94 66.22 68.19 70.06 71.98 72.99 74.59 75.83 76.79 77.23 77.23 77.83 78.22 77.85 77.52	333.15	0 0.0484 0.0969 0.1491 0.1827 0.2329 0.2832 0.3768 0.4287 0.4822 0.5423 0.5833 0.6593 0.7084 0.7669 0.8045 0.8045 0.9386 0.9756	76.23 86.43 95.58 104.26 108.82 115.22 121.02 127.47 130.23 134.47 138.43 142.41 144.83 148.61 151.07 153.36 154.63 156.40 157.53 157.21 157.38	
323.15	0 0.0484 0.0970 0.1494 0.1830 0.2333 0.3473 0.3471 0.4290 0.4825 0.5826 0.6595 0.7670 0.8046 0.8774 0.9386 0.9756	54.02 61.81 68.71 75.37 78.70 83.39 87.54 92.17 94.09 97.01 99.83 102.67 104.15 106.80 108.47 110.02 110.82 111.90 112.48 112.14	343.15	0 0.0483 0.0969 0.1488 0.1823 0.2326 0.2828 0.3465 0.3764 0.4283 0.4283 0.5420 0.5830 0.6591 0.7668 0.8044 0.8773 0.9386 0.9756	105.19 118.14 129.86 140.96 147.03 155.59 163.45 172.40 176.13 181.96 187.52 193.21 196.54 201.92 205.60 208.94 210.81 213.62 215.26 215.29 215.69	
Cons equation	stants for c are given b	alculation of acelow:	ctivity coe	fficients fr	om the Wilso	n
	T/K		Λ ₁₂		Λ ₂₁	
	293.15 303.15 313.15 323.15 333.15 343.15		0.6054 ₈ 0.6545 ₆ 0.6994 ₆ 0.7412 ₇ 0.7818 ₉ 0.8349 ₂	0 0 0	0.56004 0.56910 0.57555 0.59089 0.60184	
				(cont.)		

1. Propanamine; C₃H₉N; [107-10-8]

2. Hexane; C_6H_{14} ; [110-54-3]

ORIGINAL MEASUREMENTS:

Wolff, H.; Shadiakhy, A.
Fluid Phase Equilibria

1983, 11, 267-287.

EXPERIMENTAL VALUES:

$$\ln f_1 = -\ln(x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

$$\ln f_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

where f_1 = activity coefficient of amine

 f_2 = activity coefficient of hexane

 x_1 = mole fraction of amine in liquid

 x_2 = mole fraction of hexane in liquid.

COMPONENTS: 1. 1-Propar [25837-8] 2. Hexane; VARIABLES:	30-3]			Shadiakhy se Equilibri	
				С. L. Yo	oung
T/K	values: x_1	P/kPa	T/K	x_1	P/kPa
293.15	0.212 ₀ 0.245 ₂ 0.285 ₉ 0.348 ₃ 0.421 ₆ 0.449 ₇ 0.496 ₆ 0.555 ₂ 0.6657 ₃ 0.752 ₇ 0.752 ₇ 0.812 ₂	16.17 19.08 21.81 24.04 25.98 26.94 27.89 29.17 30.30 30.73 31.30 31.92 32.42 32.82 33.26 33.48 33.73 33.77 33.66 33.33 32.94	303.15	0 0.0466 0.0989 0.1507 0.2118 0.2450 0.2857 0.3481 0.4214 0.4964 0.5551 0.6072 0.6574 0.7079 0.7527 0.8121 0.8752 0.9695	33.06 36.26 39.13 40.64 42.14 44.05 45.97 46.61 47.57 48.61 49.44 50.17 50.80 51.22 51.60 51.81 51.73

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

Apparatus described previously was used (1), (2). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ±0.02 °C. The total pressure was measured using a mercury manometer. The authors calculated activity coefficients of each component by a method described by Barker (3). Constants for the Wilson equation (4) were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

1. Prepared via exchange reaction of non-deuterated amine with 99.97 mole per cent D_2O . Purity better than 99 mole per cent. Dried.

(cont.)

Purity 99.97 mole per cent, degassed, dried over molecular sieve.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02.$

- Wolff, H.; Höppel, H. E. Ber. Bunsenges. Phys. Chem. 1966, 70, 874.
- 2. Wolff, H.; Shadiakhy, A. Fluid Phase Equilibria 1981, 7, 309.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- 4. Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.

ORIGINAL MEASUREMENTS: COMPONENTS: Shadiakhy, A. 1-Propanamine-d₂; C₃H₇ND₂; Wolff, H.; [25837-80-3] Fluid Phase Equilibria 2. Hexane; C₆H₁₄; [110-54-3] 1983, 11, 267-287. **EXPERIMENTAL VALUES:** T/K P/kPa P/kPa x_1 T/K x_1 333.15 313.15 37.26 76.23 0.0466 42.98 86.13 0.0466 0.0987 95.59 0.0988 48.40 0.1500 104.02 0.1505 52.93 57.10 0.2110 111.99 0.2116 0.2448 59.24 0.2442 116.12 120.63 61.43 0.2848 0.2855 0.3479 64.46 0.347_{3} 126.84 0.4206 0.4212 67.42 133.08 0.4488 135.19 0.4493 68.41 0.4962 0.4957 138.51 69.90 0.5549 71.53 0.5545 142.09 0.6066 145.03 72.90 0.607 0.6569 147.65 0.6572 73.98 0.7076 149.83 75.01 0.7078 0.7526 75.62 0.7524 151.59 0.8121 76.39 0.8120 153.45 0.8749 154.87 76.79 0.875 0.9221 76.93 0.9221 155.45 0.9695 0.9695 155.63 76.66 76.18 155.10 343.15 105.19 323.15 54.02 0 0.0465 117.78 61.61 0.0466 129.99 0.0988 68.93 0.0987 75.19 0.1497 140.84 0.150_{3} 0.2107 151.55 81.03 0.2113 84.03 0.2438 157.15 0.2445 0.2844 163.21 87.25 0.2852 0.3476 91.65 0.3469 171.84 0.4202 180.36 0.4209 95.97 0.4484 183.32 0.4491 97.49 0.4953 0.4960 187.96 99.66 $\textbf{0.554}_{\,\textbf{2}}$ 193.13 0.5547 102.28 0.6064 197.22 104.19 0.6069 0.6567 200.78 0.6571 105.91 0.7074 204.12 0.707, 107.46 108.52 0.7523 206.57 0.7525 209.49 0.8119 0.8120 109.71 211.77 0.8748 0.8749 110.56 110.84 0.9220 212.92 0.9221 0.9695 213.37 0.9695 110.75 213.12 110.27 1 Constants for calculation of activity coefficients from the Wilson equation are given below: Λ₂₁ Λ_{12} T/K 0.53204 0.61398 293.15 0.54718 0.65951 303.15 0.70431 0.56223 313.15 0.57249 0.75043

0.81005

0.84849

0.56847

0.58263

(cont.)

323.15

333.15

343.15

- 1. 1-Propanamine-d₂; C₃H₇ND₂;
 [25837-80-3]
- 2. Hexane; C₆H₁₄; [110-54-3]

ORIGINAL MEASUREMENTS:

Wolff, H.; Shadiakhy, A.

Fluid Phase Equilibria

1983, 11, 267-287.

EXPERIMENTAL VALUES:

$$\ln f_1 = -\ln(x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

$$\ln f_2 = -\ln (x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

where f_1 = activity coefficient of amine

f₂ = activity coefficient of hexane

 x_1 = mole fraction of amine in liquid

 x_2 = mole fraction of hexane in liquid.

- 1. 1-Propanamine (n-Propylamine);
 C₃H_QN; [107-10-8]
- 2. Octanol, glycols and glycerol

ORIGINAL MEASUREMENTS:

Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S.

J. Amer. Chem. Soc.

1941, 63, 254-256.

VARIABLES:

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

Solvent	т/к	PC3H9N/mmHg*	Mole fraction x C ₃ H ₉ N
1-Octanol; C ₈ H ₁₈ O; [111-87-5]	305.4	106	0.408
1,2-Ethanediol (ethylene glycol); $C_2^H 6^O_2$; [107-21-1]	305.4	106	0.465
1,3-Butanediol (1,3-butylene glycol) $C_4^H_{10}^O_2$; [107-88-0]	305.4	106	0.460
1,2,3-Propanetriol (glycerol); C ₃ H ₈ O ₃ ; [56-81-5]	305.4	106	0.497
2,2'-Oxybis-ethanol, (diethylene glycol); C ₄ H ₁₀ O ₃ ; [111-46-6]	305.4	106	0.510
2,2'-[1,2-ethanediylbis(oxy)]bis- ethanol, (triethylene glycol); C ₆ H ₁₄ O ₄ ; [112-27-6]	305.4	106	0.519

⁷⁶⁰ mmHg = 1 atm = 1.013×10^5 Pa.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum, 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about 40 cm³ of solvent drawn into this drum which was then reweighed and immersed in a water bath at 32.2°C. The drum was agitated and propanamine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of propanamine at 4.5°C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

ESTIMATED ERROR:

REFERENCES:

1. Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

^{*} The pressure of propanamine was said by the authors to correspond to its vapor pressure at 4.5°C. The authors stated that they measured the vapor pressure at several temperatures and determined the value at 4.5°C from a plot of the logarithm of the vapor pressure against (K/T).

268	Solubilities of Other Amines				
C ₃ H ₉ N;	namine (<i>iso-</i> [75-31-0] C ₆ H ₁₄ ; [1	propylamine);	Fluid Ph	SUREMENTS: S.; Shadiakh ase Equilibr , 267-287.	•
VARIABLES:			PREPARED BY:	C. L. Youn	g
EXPERIMENTAL	VALUES:		<u>.l</u>		
T/K	x_1	P/kPa	T/K	<i>x</i> ₁	P/kPa
283.15	0 0.0469 0.0983 0.1546 0.1890 0.2500 0.2906 0.3361 0.3693 0.4329 0.5660 0.5660 0.6012 0.6644 0.7070 0.7511 0.8207 0.8696 0.9672	10.09 14.11 17.72 20.97 22.56 25.21 26.61 28.04 29.01 30.72 32.61 33.61 34.24 35.54 36.37 37.13 38.33 39.14 40.24 40.76 41.26	293.15	0 0.0469 0.0983 0.1544 0.1887 0.2497 0.2903 0.3358 0.3690 0.4326 0.5157 0.6610 0.6642 0.7069 0.7510 0.8695 0.8695 0.9672	16.17 21.74 27.05 31.84 34.22 38.17 40.30 42.60 44.14 46.78 49.77 51.46 52.62 54.52 55.81 57.02 59.00 60.32 62.05 62.82 63.61
1				,	(GOME.)

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

Apparatus described previously was used (1), (2). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ±0.02 °C. The total pressure was measured using a mercury manometer. The authors calculated activity coefficients of each component by a method described by Barker (3). Constants for the Wilson equation (4) were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- Fluka purissima grade, fractionated, purity 99.995 mole per cent.
- Purity 99.97 mole per cent, degassed, dried over molecular sieve.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02.$

- Wolff, H.; Höppel, H. E. Ber. Bunsenges. Phys. Chem. 1966, 70, 874.
- Wolff, H.; Shadiakhy, A. Fluid Phase Equilibria 1981, 7, 309.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- 4. Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.

- 1. 2-Propanamine (iso-propylamine);
 C₃H₉N; [75-31-0]
- 2. Hexane; C₆H₁₄; [110-54-3]

ORIGINAL MEASUREMENTS

Wolff, H.; Shadiakhy, A.

Fluid Phase Equilibria

1983, 11, 267-287.

T/K	x_1	P/kPa	T/K	x_1	P/kPa
303.15	0 0.0469 0.0982 0.1541 0.1884 0.2494 0.2899 0.33587 0.4322 0.5154 0.5654 0.6007 0.7667 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 1	25.00 32.58 39.86 46.72 49.98 55.77 59.00 62.43 64.70 68.70 73.42 75.95 77.67 80.67 82.59 84.49 87.45 89.50 92.15 93.23 94.60	323.15	0 0.0468 0.0981 0.1534 0.1876 0.2484 0.2890 0.33677 0.4313 0.5145 0.5646 0.5999 0.6633 0.7061 0.7503 0.8202 0.82671 1	54.02 67.26 80.13 92.41 98.51 109.62 116.23 123.07 127.82 136.10 145.97 151.45 155.15 161.49 165.49 169.63 176.05 180.29 186.06 188.53 191.23
313.15	0 0.0468 0.0982 0.1538 0.1880 0.2489 0.2895 0.3350 0.3682 0.4318 0.5150 0.66004 0.66637 0.7064 0.7506 0.8203 0.8693 0.9367 1	37.26 47.46 57.28 66.54 71.05 79.23 84.02 88.79 92.21 98.02 104.92 108.79 111.31 115.68 118.54 121.31 125.83 128.76 132.80 134.50 136.36	333.15	0 0.046 8 0.098 1 0.153 0 0.153 0 0.247 9 0.288 4 0.333 8 0.367 1 0.430 7 0.514 0 0.564 1 0.599 5 0.662 9 0.750 0 0.819 9 0.869 0 0.936 6 0.967 0 1	76.23 93.03 109.32 125.42 133.68 148.24 157.20 166.49 172.89 184.25 198.09 205.69 211.02 219.66 225.35 231.14 240.03 246.11 254.41 257.67 261.57

Constants for calculation of activity coefficients from the Wilson equation are given below:

Λ ₁₂	Λ ₂₁	
0.59400	0.58961	
0.64272	0.59865	
0.69055	0.61149	
0.73255	0.62334	
0.7795,	0.63104	
0.81842	0.64446	
	(cont.)	
	0.5940 ₀ 0.6427 ₂ 0.6905 ₅ 0.7325 ₅ 0.7795 ₇	

2-Propanamine (iso-propylamine);
 C₃H₉N; [75-31-0]

2. Hexane; C₆H₁₄; [110-54-3]

ORIGINAL MEASUREMENTS:

Wolff, H.; Shadiakhy, A.

Fluid Phase Equilibria

1983, 11, 267-287.

EXPERIMENTAL VALUES:

$$\ln f_1 = -\ln(x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

$$\ln f_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

where f₁ = activity coefficient of amine

f₂ = activity coefficient of hexane

 x_1 = mole fraction of amine in liquid

 x_2 = mole fraction of hexane in liquid.

COMPONENTS:			ORIGINAL MEAS	UREMENTS:	
 2-Propanamine-d₂; C₃H₇ND₂; [7395-10-0] Hexane; C₆H₁₄; [110-54-3] 			Fluid Pha	; Shadiakhy se Equilibri 267-287.	
VARIABLES:			PREPARED BY:	С. L.	Young
EXPERIMENTAL V	VALUES:				
T/K	x_1	P/kPa	T/K	<i>x</i> 1	P/kPa
283.15	0 0.052 ₀ 0.105 ₃ 0.157 ₃ 0.198 ₉ 0.233 ₄ 0.299 ₅ 0.347 ₄ 0.399 ₁ 0.453 ₇ 0.516 ₁ 0.567 ₄ 0.621 ₂ 0.673 ₇ 0.714 ₈ 0.787 ₇ 0.880 ₂ 0.925 ₈ 0.970 ₅	24.14 26.45 27.92 29.36 30.61 31.96 33.00 34.00 34.93 35.72 37.02 37.53 38.42 39.10	293.15	0 0.0520 0.1053 0.153 0.1986 0.2331 0.2992 0.3470 0.3988 0.4535 0.5159 0.5671 0.6210 0.6735 0.7146 0.7876 0.8215 0.8801 0.9258 0.9705	16.17 22.24 27.50 31.78 34.58 36.66 40.26 42.54 44.76 46.89 49.05 50.77 52.38 53.88 55.08 57.02 57.92 59.42 60.62 61.69 62.31

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

Apparatus described previously was used (1), (2). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ±0.02 °C. The total pressure was measured using a mercury manometer. The authors calculated activity coefficients of each component by a method described by Barker (3). Constants for the Wilson equation (4) were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- Prepared via exchange reaction of non-deuterated amine with 99.7 mole per cent D₂O. Purity better than 99 mole per cent. Dried.
- Purity 99.97 mole per cent, degassed, dried over molecular sieve.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$

- 1. Wolff, H.; Höppel, H. E. Ber. Bunsenges. Phys. Chem. 1966, 70, 874.
- 2. Wolff, H.; Shadiakhy, A. Fluid Phase Equilibria 1981, 7, 309.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- 4. Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.

COMPONENTS:		· · · · · · · · · · · · · · · · · · ·	ORIGINAL M	MEASUREMENTS:	
1. 2-Propar		C ₃ H ₇ ND ₂ ;	Wolff,	H.; Shadiakhy	, A.
2. Hexane;	· · · •	[110-54-3]		Phase Equilibri 11, 267-287.	Ča
EXPERIMENTAL	VALUES:		· · · · · · · · · · · · · · · · · · ·		
T/K	<i>x</i> 1	P/kPa	T/K	x_1	P/kPa
303.15	0 0.0519 0.1052 0.1568 0.1983 0.2327 0.2989 0.3467 0.3984 0.4531 0.5155 0.5668 0.6208 0.6733 0.7144 0.8214 0.8801 0.9258 0.9704	25.00 33.28 40.58 46.65 50.56 53.74 59.05 62.47 65.87 69.07 72.43 75.01 77.53 79.90 81.79 84.71 86.11 88.45 90.26 91.97	323.15	0 0.0519 0.1051 0.1561 0.1975 0.2318 0.2979 0.3457 0.3974 0.4522 0.5146 0.5660 0.6201 0.6727 0.7139 0.7870 0.8211 0.8798 0.9256 0.9704	54.02 68.31 81.29 92.43 99.83 105.96 116.68 123.67 130.64 137.47 144.64 150.08 155.68 160.84 164.67 171.21 174.21 179.25 183.13 186.72 189.09
313.15	0 0.0519 0.1052 0.1565 0.1979 0.2323 0.2984 0.3462 0.3980 0.4527 0.5151 0.5665 0.6205 0.673 0.7142 0.7872 0.8213 0.8800 0.9257 0.9704 1	37.26 48.33 58.24 66.2 71.91 76.46 84.18 89.15 94.09 98.81 103.83 107.67 111.42 114.92 117.62 122.19 124.23 127.79 130.39 132.94 134.46	333.15	0 0.0518 0.1050 0.1557 0.1970 0.2313 0.2973 0.3451 0.3968 0.4516 0.5141 0.5655 0.6196 0.6723 0.7135 0.7868 0.8209 0.8209 0.8797 0.9255 0.9704	76.23 94.35 110.87 125.44 135.31 143.53 157.97 167.52 177.03 186.52 196.66 204.30 212.02 219.24 224.58 233.83 238.21 245.34 250.70 255.87 259.20
Consta equation ar	e given b	alculation of elow:		fficients from	the Wilson
}	T/K		Λ12	Λ ₂₁	
	283.15 293.15 303.15 313.15 323.15 333.15		0.5998 ₃ 0.6393 ₀ 0.6856 ₃ 0.7289 ₀ 0.7789 ₉ 0.8249 ₄	0.5755 0.5976 0.6131 0.6255 0.6331 0.6412	6 9 0
ł				(COHE.)	

2-Propanamine-d₂; C₃H₇ND₂; [7395-10-0]

2. Hexane; C₆H₁₄; [110-54-3]

ORIGINAL MEASUREMENTS:

Wolff, H.; Shadiakhy, A.

Fluid Phase Equilibria

1983, 11, 267-287.

EXPERIMENTAL VALUES:

$$\ln f_1 = -\ln(x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

In
$$f_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right]$$

where $f_1 = activity$ coefficient of amine

f₂ = activity coefficient of hexane

 x_1 = mole fraction of amine in liquid

 x_2 = mole fraction of hexane in liquid.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 2-Propanamine (iso-propyl amine); C₃H₉N; [75-31-0] Glycols 	Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S. J. Amer. Chem. Soc. 1941, 63, 254-256.
VARIABLES:	PREPARED BY: P. G. T. Fogg

EXPERIMENTAL VALUES:

Solvent	T/K	PC3H9N/mmHg*	Mole fraction ${}^x\mathrm{C}_3\mathrm{H}_9\mathrm{N}$
1,2-Ethanediol (ethylene glycol); C2H6O2; [107-21-1]	305.4	223	0.488
2,2'-Oxybis-ethanol, (diethylene glycol); C ₄ H ₁₀ O ₃ ; [111-46-6]	305.4	223	0.517
2,2'-[1,2-ethanediylbis(oxy)]bis- ethanol, (triethylene glycol); C ₆ H ₁₄ O ₄ ; [112-27-6]	305.4	223	0.552

* The pressure of 2-propanamine was said by the authors to correspond to its vapor pressure at 4.5°C. The authors stated that they measured the vapor pressure at several temperatures and determined the value at 4.5°C from a plot of the logarithm of the vapor pressure against K/T.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about 40 cm³ of solvent drawn into this drum which was then reweighed and immersed in a water bath at 32.2 °C. The drum was agitated and 2-propanamine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of 2-propanamine at 4.5 °C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

ESTIMATED ERROR:

REFERENCES:

 Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

Solubilities of Other Amines			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
 1. 1-Butanamine, (n-butylamine); C₄H₁₁N; [109-73-9] 2. Glycols and amines 	Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S. J. Amer. Chem. Soc. 1941, 63, 254-256.		
VARIABLES:	PREPARED BY: P. G. T. Fogg		
EXPERIMENTAL VALUES:			
Solvent	T/K ${}^{p}C_{4}^{H}_{11}^{N/mmHg*}$ Mole fraction ${}^{x}C_{4}^{H}_{11}^{N}$		

EXPERIMENTAL VALUES:			Mole fraction
Solvent	т/к	PC4H11N/mmHg*	^x C ₄ H ₁₁ N
1,2-Ethanedio1, (ethylene glycol); C ₂ H ₆ O ₂ ; [107-21-1]	305.4	24	0.400
2,2'-Oxybis-ethanol, (diethylene glycol); $C_4^H_{10}^O_3$; [111-46-6]	305.4	24	0.384
2,2'-[1,2-ethanediylbis(oxy)]bis- ethanol, (triethylene glycol); C ₆ H ₁₄ O ₄ ; [112-27-6]	305.4	24	0.405
2,2'-[oxybis(2,1-ethanediyloxy)]bis- ethanol, (tetraethylene glycol); C ₈ H ₁₈ O ₅ ; [112-60-7]	305.4	24	0.410
1,6-Hexanediamine (hexamethylened- iamine); $C_6^H 16^N 2$; [124-09-4]	305.4	24	0.144
<pre>N,N'-bis(2-aminoethyl)-1,2-ethan- ediamine, (triethylenetetramine); C6H18N4; [112-24-3]</pre>	305.4	24	0.145

^{*} The pressure of 1-butanamine was said by the authors to correspond to its vapor pressure at 4.5 °C. The authors stated that they measured the vapor pressure at several temperatures and determined the values at 4.5 °C from a plot of the logarithm of the vapor pressure against (K/T).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum, 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about 40 cm³ of solvent drawn into this drum which was then reweighed and immersed in a water bath at 32.2°C. The drum was agitated and 1-butanamine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of 1-butanamine at 4.5°C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

ESTIMATED ERROR:

REFERENCES:

1. Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

2-Butanamine, (sec-butylamine); C₄H₁₁N; [13952-84-6]

2. 1,2-Ethanediol, (ethylene glycol); $C_2H_6O_2$; [107-21-1]

ORIGINAL MEASUREMENTS:

Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S.

J. Amer. Chem. Soc.

1941, 63, 254-256.

VARIABLES:

COMPONENTS:

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

 P C $_{4}$ H $_{11}$ N $^{/mmHg*}$

Mole fraction ${}^x\mathrm{C}_4\mathrm{H}_{11}\mathrm{N}$

305.4

56.5

0.397

760 mmHg = 1 atm = 1.013×10^5 Pa.

* The pressure of 2-butanamine was said by the authors to correspond to its vapor pressure at $4.5\,^{\circ}\mathrm{C}$. The authors stated that they measured the vapor pressure at several temperatures and determined the value at $4.5\,^{\circ}\mathrm{C}$ from a plot of the logarithm of the vapor pressure against (K/T).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum, 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about 40 cm³ of solvent drawn into this drum which was then reweighed and immersed in a water bath at 32.2°C. The drum was agitated and 2-butanamine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of 2-butanamine at 4.5°C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

ESTIMATED ERROR:

REFERENCES:

1. Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

COMPONENTS: 1. 2-Methyl-1-propanamine, (iso-butylamine); C₄H₁₁N; [78-81-9] 2. 1,2-Ethanediol, (ethylene glycol); C₂H₆O₂; [107-21-1] VARIABLES:

ORIGINAL MEASUREMENTS:

Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S. J. Amer. Chem. Soc. 1941, 63, 254-256.

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

T/K	$p_{\mathbf{C_4^H_{11}N}/\mathrm{mmHg*}}$	Mole fraction x C $_{4}$ H $_{11}$ N
305.4	45.4	0.381

760 mmHg = 1 atm = 1.013×10^5 Pa.

* The pressure of 2-methyl-1-propanamine was said by the authors to correspond to its vapor pressure at 4.5°C. The authors stated that they measured the vapor pressure at several temperatures and determined the value at 4.5° C from a plot of the logarithm of the vapor pressure against 1/(T/K).

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum, 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about of solvent drawn into this 40 cm drum which was then reweighed and immersed in a water bath at 32.2°C. The drum was agitated and the amine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of the amine at 4.5°C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

ESTIMATED ERROR:

RLFERENCES:

1. Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

278 Solubilities of Other Amines COMPONENTS: ORIGINAL MEASUREMENTS: Copley, M.J.; Ginsberg, E.; Zellhoefer, G.F.; Marvel, C.S. 1. N-Ethylethanamine (diethylamine) C4H11N; [109-89-7] J. Amer. Chem. Soc. 2. 1,2-Ethanediol, (ethylene glycol); $C_2H_6O_2$; [107-21-1] 1941, 63 254-256. VARIABLES: PREPARED BY: P. G. T. Fogg EXPERIMENTAL VALUES: Mole fraction $p_{\mathrm{C_4H_{11}N}/\mathrm{mmHg}*}$ T/K x C $_{4}$ H $_{11}$ N

88

760 mmHg = 1 atm = 1.013 x 10^5 Pa.

* The pressure of diethylamine was said by the authors to correspond to its vapor pressure at 4.5 $^{\rm O}{\rm C}$. The authors stated that they measured the vapor pressure at several temperatures and determined the value at 4.5 $^{\rm O}{\rm C}$ from a plot of the logarithm of the vapor pressure against (K/T).

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

305.4

The absorption apparatus was developed for studies of refrigeration systems (ref. (1)) and consisted of a copper drum, 4 x 12 cm, fitted with a needle valve and two-way outlet with one outlet connected to a manometer. The drum was evacuated to a pressure of 1 mmHg and about 40 cm³ of solvent drawn into this drum which was then reweighed and immersed in a water bath at 32.2°C. The drum was agitated and diethylamine vapor allowed to flow slowly into it until the final pressure corresponded to the vapor pressure of diethylamine at 4.5°C. The drum and contents were weighed again to find the weight of vapor which had been absorbed.

SOURCE AND PURITY OF MATERIALS:

The authors stated that the materials used were all purified carefully by chemical means and fractional distillation where feasible.

0.371

ESTIMATED ERROR:

REFERENCES:

1. Zellhoefer, G.F. Ind. Eng. Chem. 1937, 29, 548.

- N, N-Diethylethanamine, (Triethylamine); $C_6^H_{16}^N$; [121-44-8]
- 2. Nitro-methane; CH₃NO₂; [75-52-5]

ORIGINAL MEASUREMENTS:

Halban, H.

Phys. Chem.

1913, 84, 129-159.

VARIABLES:

Concentration

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

T/K	Concentration of C6H16N in solution/mol dm	pC6H16N/wwHd	Concentration of C6H16N in solution/concentration in gas phase	Mole fraction in solution* ${}^{x}C_{6}{}^{H}_{16}{}^{N}$
298.2	0.300	13.7	408	0.0159
	0.214	9.76	407	0.0114
	0.190	8.83	400	0.0102
1				

* Calculated by the compiler, using the density of the solvent given in ref. (1), on the assumption that dissolution of gas caused negligible change of volume of the liquid phase.

AUXILIARY INFORMATION

METHOD 'APPARATUS / PROCEDURE:

The partial pressures of triethylamine above solutions of concentrations determined by titration, were measured by a dynamic method (refs. Mixtures of hydrogen and (2) & (3)). oxygen, produced by electrolysis of sodium hydroxide solution, were passed through each solution of triethyl-The triethylamine in the gas stream was absorbed in hydrochloric acid and estimated from changes in electrical conductivity due to partial neutralisation of the acid. The volumes of hydrogen/oxygen gas mixture produced by electrolysis were found from the barometric pressure and changes in a copper voltameter in series with the cell for producing the gas. The partial pressures of triethylamine were calculated on the assumption that equilibrium was established between triethylamine in solution and that in the gas phase, during passage of hydrogen/oxygen mixture through the solution.

SOURCE AND PURITY OF MATERIALS:

- Hydrated chloride from Kahlbaum; reacted with KOH; gas dried with NaOH.
- 2. Prepared according to ref. (4); dried over potassium carbonate; b.p. 100.6°C (751 mmHg).

- 1. Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds Vol. 2, Elsevier, Amsterdam. 1965
- 2. Gaus, 2. Anorg. Chem. 1900, 25, 236.
- 3. Abegg, R.; Riesenfeld, H. Z. Phys.
- Chem. 1902, 40, 84. 4. Steinkopf, W; Kirchoff, G. Ber. Dtsch. Chem. Ges. 1909, 42, 3438.

ORIGINAL MEASUREMENTS:
Halban, H. 2. Phys. Chem. 1913, 84, 129-159.
PREPARED BY:
P. G. T. Fogg

T/K	Concentration of C6H16N in solution/mol dm	PC6H16N/mmHg	Concentration of C6H16N in solution/concentration in gas phase	Mole fraction in solution* **C6H16N
298.2	0.300	2.56	2175	0.0380
	0.269	2.35	2129	0.0342
į.	0.238	2.04	2169	0.0304

* Calculated by the compiler, using the density of the solvent given in ref. (1), on the assumption that dissolution of gas caused negligible change of volume of the liquid phase.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

The partial pressures of triethylamine above solutions of concentrations determined by titration, were measured by a dynamic method (refs. (2) & (3)). Mixtures of hydrogen and oxygen, produced by electrolysis of sodium hydroxide solution, were passed through each solution of The triethylamine in triethylamine. the gas stream was absorbed in hydrochloric acid and estimated from changes in electrical conductivity due to partial neutralisation of the The volumes of hydrogen/ acid. oxygen gas mixture produced by electrolysis were found from the barometric pressure and changes in a copper voltameter in series with the cell for producing the gas. partial pressures of triethylamine were calculated on the assumption that equilibrium was established between triethylamine in solution and that in the gas phase, during passage of hydrogen/oxygen mixture through the solution.

SOURCE AND PURITY OF MATERIALS:

- Hydrated chloride from Kahlbaum; reacted with KOH; gas dried with NaOH.
- Kahlbaum n-Hexan aus Propyljodid; distilled over Na; b.p. 67.85-68.10°C (745 mmHg).

ESTIMATED ERROR:

- Dreisbach, R.R. Physical Properties of Chemical Compounds, Vol. 2, A.C.S., Washington. 1959.
- 2. Gaus, Z. Anorg. Chem. 1900, 25, 236.
- Abegg, R.; Riesenfeld, H. Z. Phys. Chem. 1902, 40, 84.